Monday, June 4, 2012

Nanomedicine Fights Cancer

The use of nanotechnology in medicine offers some exciting possibilities. Some techniques are only imagined, while others are at various stages of testing, or actually being used today. Nanotechnology in medicine involves applications of nanoparticles currently under development, as well as longer range research that involves the use of manufactured nano-robots to make repairs at the cellular level (sometimes referred to as nanomedicine). the use of nanotechnology in the field of medicine could revolutionize the way we detect and treat damage to the human body and disease in the future, and many techniques only imagined a few years ago are making remarkable progress towards becoming realities.


Nanotechnology in Medicine Application: Drug Delivery




Normal v/s Cancerous Cells
One application of nanotechnology in medicine currently being developed involves employing nanoparticles to deliver drugs, heat, light or other substances to specific types of cells (such as cancer cells). Particles are engineered so that they are attracted to diseased cells, which allows direct treatment of those cells. This technique reduces damage to healthy cells in the body and allows for earlier detection of disease. For example, nanoparticles that deliver chemotherapy drugs directly to cancer cells are under development. Tests are in progress for targeted delivery of chemotherapy drugs and their final approval for their use with cancer patients is pending. Many researchers attach ethylene glycol molecules to nanoparticles that deliver therapeutic drugs to cancer tumors. The ethylene glycol molecules stop white blood cells from recognizing the nanoparticles as foreign materials, allowing them to circulate in the blood stream long enough to attach to cancer tumors. However researchers at the University of California, San Diego believe that they can increase the time nanoparticles can circulate in the blood stream. They are coating nanoparticles containing therapeutic drugs with membranes from red blood cells and have shown that these nanoparticles will circulate in a mouse's blood stream for almost two days, instead of the few hours observed for nanoparticles using ethylene glycol molecules. Researchers are also continuing to look for more effective methods to target nanoparticles carrying threputic drugs directly to diseased cells. For example scientists are MIT have demonstrated increased levels of drugs delivery to tumors by using two types of nanoparticles. The first type of nanoparticle locates the cancer tumor and the second type of nanoparticle (carrying the therapeutic drugs) homes in on a signal generated by the first type of nanoparticle.


Nanotechnology in Medicine Application: Therapy Techniques




Medical illustration- Gold nanoshells.
Buckyballs may be used to trap free radicals generated during an allergic reaction and block the inflammation that results from an allergic reaction.


Nanoshells may be used to concentrate the heat from infrared light to destroy cancer cells with minimal damage to surrounding healthy cells. For a good visual explanation of nanoshells, click here. Nanospectra Biosciences has developed such a treatment using nanoshells illuminated by an infrared laser that has been approved for a pilot trial with human patients.


Nanoparticles, when activated by x-rays, that generate electrons that cause the destruction of cancer cells to which they have attached themselves. This is intended to be used in place radiation therapy with much less damage to healthy tissue. Nanobiotix has released preclinical results for this technique.


Aluminosilicate nanoparticles can more quickly reduce bleeding in trauma patients by absorbing water, causing blood in a wound to clot quickly. Z-Medica is producing a medical gauze that uses aluminosilicate nanoparticles.
Nanofibers can stimulate the production of cartilage in damaged joints.
Nanoparticles may be used, when inhaled, to stimulate an immune response to fight respiratory virsuses.


Nanotechnology in Medicine Application: Diagnostic and Imaging Techniques



Colloidal quantum dots irradiated with a UV light. Different sized quantum dots emit different color light due to quantum confinement.
Quantum Dots (qdots) may be used in the future for locating cancer tumors in patients and in the near term for performing diagnostic tests in samples. Invitrogen's website provides information about qdots that are available for both uses, although at this time the use "in vivo" (in a living creature) is limited to experiments with lab animals. Concerns about the toxicity of the material that quantum dots are made from is one of the reasons restricting the use of quantum dots in human patients. However, work is being done with quantum dots composed of silicon, which is believed to be less toxic than the cadmium contained in many quantum dots.


Iron oxide nanoparticles can used to improve MRI images of cancer tumors. The nanoparticle is coated with a peptide that binds to a cancer tumor, once the nanoparticles are attached to the tumor the magnetic property of the iron oxide enhances the images from the Magnetic Resonance Imagining scan.


Nanoparticles can attach to proteins or other molecules, allowing detection of disease indicators in a lab sample at a very early stage. There are several efforts to develop nanoparticle disease detection systems underway. One system being developed by Nanosphere, Inc. uses gold nanoparticles, Nanosphere has clinical study results with their Verigene system involving it's ability to detect four different nucleic acids, while another system being developed by T2 Biosystems uses magnetic nanoparticles to identify specimens, including proteins, nucleic acids, and other materials.


Gold nanoparticles that have antibodies attached can provide quick diagnosis of flu virus. When light is directed on a sample containing virus particles and the nanoparticles the amount of light reflected back increases because the nanoparticles cluster around virus particles, allowing a much faster test than those currently used.

Nanotechnology in Medicine Application: Anti-Microbial Techniques


One of the earliest nanomedicine applications was the use of nanocrystalline silver which is as an antimicrobial agent for the treatment of wounds.


A nanoparticle cream has been shown to fight staph infections. The nanoparticles contain nitric oxide gas, which is known to kill bacteria. Studies on mice have shown that using the nanoparticle cream to release nitric oxide gas at the site of staph abscesses significantly reduced the infection.


Burn dressing that is coated with nanocapsules containing antibotics. If a infection starts the harmful bacteria in the wound causes the nanocapsules to break open, releasing the antibotics. This allows much quicker treatment of an infection and reduces the number of times a dressing has to be changed.


A welcome idea in the early study stages is the elimination of bacterial infections in a patient within minutes, instead of delivering treatment with antibiotics over a period of weeks.  

No comments:

Post a Comment